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ABSTRACT
A critical challenge with querying video data is that the user is
often unaware of the contents of the video, its structure, and the
exact terminology to use in the query. While these problems exist
in exploratory querying settings over traditional structured data,
these problems are exacerbated for video data, where the informa-
tion is sourced from human-annotated metadata or from computer
vision models running over the video. In the absence of any guid-
ance, the human is at a loss for where to begin the query session,
or how to construct the query. Here, autocompletion-based user
interfaces have become a popular and pervasive approach to inter-
active, keystroke-level query guidance. To guide the user through
the query construction process, we develop methods that combine
Vision Language Models and Large Language Models for generat-
ing query suggestions that are amenable to autocompletion-based
user interfaces. Through quantitative assessments over real-world
datasets, we demonstrate that our approach provides a meaningful
benefit to query construction for video queries.
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1 INTRODUCTION
The rapid rise in video content has motivated the need to man-
age, process, and effectively query such data. The proliferation
of video data, driven by its increasing use in applications such as
social media, IoT devices, and vehicle cameras underscores the ur-
gency for more sophisticated data management solutions. Video
content is not only large in volume but also complex in struc-
ture, making it difficult to manage and retrieve efficiently. While
the database community has made several excellent strides in the
area of video database management systems (VDBMS) [23, 49],
unlocking a variety of impressive capabilities in analytical query
processing [2, 6, 21], storage [11, 18], manipulation [46] and more.
In this realm, we observe that the specification of queries poses
an interesting chicken-and-egg problem: given the latent structure,
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complex content, and unstandardized terminology to refer to con-
tent in the videos, a user would have to watch some or all of the
videos first, before they can specify a fully-informed VDBMS query.
However, such a time investment in initially browsing videos may
obviate the query processing benefits of a VDBMS. One approach
to breaking this dependency cycle would be to implement systems
that suggest queries based on contextual data and content analysis,
thereby assisting users in formulating precise and effective queries
without the need for extensive preliminary video review. However,
this approach requires zero-shot [30, 52] automatic analysis and
description of video content at a high enough quality level that it
compares with a human-level description of video content. Capa-
bility of such levels has only recently been realized through very
recent advancements in computer vision and Vision Language Mod-
els (VLMs) [29, 32]. These technologies now enable sophisticated
analysis and zero-shot understanding of video data, opening new
avenues for interactive and responsive query systems. When com-
bined with the generative capabilities of modern Large Language
Models (LLMs) [5, 45], we find a new opportunity to automate the
creation of query suggestions for video data, which can be effective
and useful for a user exploring a large collection of videos. Hence,
our problem can be stated as: Given a collection of videos, guide the
user in a way that best assists in specifying relevant queries over video
data, where relevance is evaluated by the effectiveness of query
suggestions in reducing the manual review needed and the accuracy
of the retrieved video content. To address this problem, we look
into the use of autocompletion, which provides a rapid, interactive,
and iterative approach to query specification. At each keystroke,
the user is presented with options to expand, enhance, and refine
their queries. Users can either pick from these suggestions, or con-
tinue unassisted to further express their query. By gleaning insights
about the contents of the video data from these suggestions, the
user can learn about the exact contents of the video while they
are typing out their query. This guided interaction loop of query
intent⟳autocompletion suggestion−→query result is nearly imper-
ceptible to the user, but dramatically improves the user’s querying
experience, as evidenced by its large-scale adoption in mainstream
web search engines, email clients, and other software.
Alignment and Contributions: Our work aligns with the HILDA
workshop’s goals by enhancing the efficacy and usability of video
database management systems through interactive autocompletion
suggestions. By leveraging VLMs and LLMs to facilitate query for-
mulation, it introduces innovative, human-in-the-loop approaches
to exploring complex video data. Our contributions are:
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(a) Query autocomplete scenario (b) Procedure of generating search phrases

Figure 1: Overview of query suggestion system

• We provide a system that autocompletes queries for retrieval
of video content based on zero-shot video understanding
capabilities inherent in both VLMs and LLMs. This innova-
tion streamlines the discovery process and enhances user
interactivity with the multifaceted information extracted
from video data.
• We leverage LLMs to simplify the search process by intel-
ligently segmenting search phrases, minimizing the user’s
input effort for search completion.
• We demonstrate that our proposed method of creating a
word graph for autocompletion significantly reduces the
user’s effort by measuring the number of keystrokes a user
inputs to complete a query.

2 RELATEDWORK
We build on a diverse body of work towards our vision for a video
search query suggestion system, ranging from VLMs which inte-
grate language and vision models, computer vision, and structured
query autocompletion.

Vision Language Models: Recent advances in computer vision
and natural language processing have led to the emergence of
VLMs that combine vision and language models. VLMs can lever-
age the complementary strengths of both modalities to perform
various tasks, making them a key research topic in multimodal
artificial intelligence. CLIP [40], a pioneer in this space, achieves
high zero-shot classification performance by jointly training on
vision and language. ImageBind [15] demonstrated the potential
of multimodal learning by training a single model to perform six
cross-modal understanding tasks.

The integration of vision and language through LLMs [5, 20, 45]
has been a focal point in recent research. Notably, Flamingo [1] and
BLIP-2 [27] make significant strides in aligning the cross-modality
of LLMs using web-scale image-text datasets. InstructBLIP [10]
and miniGPT-4 [51] further push the boundaries of this integration
by harnessing the power of pre-trained models to excel in vision-
instruction tasks. These advancements highlight the potential of
LLMs to make substantial contributions to the VLMs field. For
instance, LLaVA [32] extends Vicuna [9] with a simple linear model
with learnable parameters, enabling it to process text and images
in the same space.

Video-LLaMA [50] and VideoChat [28] attempt to represent
videos as embedding vectors using BLIP-2 [27] to enhance the un-
derstanding of videos through LLMs. Concurrently, Video-ChatGPT [33]
proposes spatial and temporal pooling for video features. Addition-
ally, LLaMA-VID [29] and PLLaVA [48] introduce a VLMs capable
of encoding each video frame, allowing for the representation of
longer videos.

Video Analytics using Computer Vision: There is a signifi-
cant body of work focused on analyzing videos for tasks such
as detection [19, 42, 43], tracking [4, 47], and estimating 3D loca-
tions [14, 41]. NoScope [22] is a system proposed for efficiently
analyzing videos collected from stationary cameras. Instead of
analyzing every frame using a video vision model, it utilizes an
inference-optimized model to extract and analyze highlight frames.
BlazeIt [21] is a method that reduces processing time by defining
queries and user-defined functions (UDFs) for analysis, allowing
only the information desired by the user to be processed. OTIF [3]
propose a method to speed up processing using a segmentation
proxy model to determine which frames need processing, thereby
reducing unnecessary tasks. ExSample [36] suggests a method that
involves scoring each sample. This strategy enables the analysis of
specific instances in a video using a restricted set of samples. Mon-
odepth2 [16] sought to analyze videos by estimating per-pixel depth
from monocular videos. EVA [49] utilized exploratory video analyt-
ics by identifying and reusing the results of expensive user-defined
functions. Spatialyze [26] is an end-to-end system that provides
geospatial information about objects within videos using an object
detector, 3D location estimator, and object tracker.

Present video analytics technologies are primarily designed for
perception tasks, such as identifying objects within predefined cat-
egories. However, these technologies have their constraints. For
example, object detectors are limited to recognizing only those
objects they have been trained on, and the spatial data they provide
is restricted to coordinates, which narrows down the scope of how
a video’s attributes are represented. However, by leveraging VLMs,
we can offer users a unique and powerful tool. VLMs integrate
the visual features of a video with linguistic descriptions, enabling
multidimensional analysis beyond simple object recognition. This
novel approach not only promises a deeper understanding of video
content but also provides contextually relevant information in a
way that was previously unexplored.
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Guiding Structured Querying using Autocompletion: Auto-
completion has become a pervasive input assistance mechanism, al-
lowing users to not only reduce input effort [38], but also guide [39]
the user to their intended queries in an interactive manner. Auto-
completion mechanisms have been developed to go beyond just
plain text, and work with rich schema [37], have tolerance towards
errors [8] and awareness towards query contexts [25]. It has also
served an excellent delivery mechanism for query recommenda-
tion [35] and personalization [7] based on a user’s prior query his-
tories. Video retrieval in response to semantic queries [30, 31, 44]
is a foundational challenge in the field of video search, one that
has been repeatedly highlighted for its significance. At the heart
of this challenge is the imperative to operate in a zero-shot [12]
capacity. The criticality of this approach is underscored by the dy-
namic nature of video content, which demands a system’s ability
to analyze and adapt to ever-changing scenarios. Given the unpre-
dictable and varied landscape of video data, it is essential for such
a system to possess the finesse to interpret and retrieve relevant
videos accurately, without the need for prior training on specific
cases. The availability of generative methods, VLMs and LLMs have
now unlocked the ability for us to build on this body of prior work
and extend into the area of video queries.

3 AUTOCOMPLETION FOR VIDEO SEARCH
QUERIES

We introduce an innovative autocompletion system for video search
queries designed to facilitate users in formulating queries by lever-
aging the automatic analysis of video data, as shown in Figure 1(a).
This system not only suggests relevant search terms to users who
may not be familiar with the video content in the database but also
enhances the search experience by intuitively predicting user needs.
While we expect our system to extend to more complex queries
such as aggregation and data manipulation queries, for the scope of
this paper we restrict ourselves to search queries. Detailed discus-
sions in Section 3.1 articulate the use of VLMs for analyzing video
scenes, while Section 3.2 elaborates on the algorithmic generation
of search phrases for the autocomplete feature. Section 3.3 further
explains how these search phrases are parsed, ensuring they are
contextually appropriate and contribute to a more efficient and
user-friendly video search process.

3.1 Scene Understanding via VLMs
An immense volume of video data is generated through the internet,
mobile devices, and mobilities, accumulating in databases without
specific categorization. VDBMS is a system that evaluates these
videos and delivers the findings to users. With the advancement
of deep learning, it has become possible to automatically analyze
videos, such as tracking a suspect vehicle after examining CCTV
footage. Consequently, users can input queries to extract desired
information from vast video data. However, it’s crucial to note that
traditional VDBMS have limitations, as they can only utilize the
information that deep learning models can provide. For instance, if
a user wants to find a video of “a man unloading a truck” within
the database, conventional VDBMS may be unable to perform such
a task. This is a clear indication of the need for more advanced

solutions, as traditional VDBMS are only capable of simple analyses,
such as identifying the location and direction of objects in a video,
but not complex analyses involving behaviors or states.

Multimodal Large Language Models (MLLM) are emerging as
a solution to overcome these limitations. MLLMs are trained on
data from cross-modality with different dimensions, allowing them
to express the relationships between the characteristics of each
modality. Integrating MLLMs with VDBMS makes it feasible to
analyze video data and provide it to users. This system enables users
to access desired videos, as exemplified in the scenario mentioned
above. Therefore, we suggest integrating VLMs, a type of MLLM,
with VDBMS. This integration aims to examine videos and utilizes
the insights gained to refine and automatically complete user search
queries.

3.2 Making Search Phrases for Autocompletion
Our system’s approach to video data analysis leverages VLMs for
their exceptional zero-shot scene understanding, enabling diverse
user interactions that traditional VDBMS systems cannot facilitate.
These VLMs can effortlessly interpret complex scenarios, such as
a pedestrian crossing a crosswalk with a bag at an intersection, a
truck navigating a bridge over a river, or vehicles halted at a red
light. Integrated into the initial phase of our process, as illustrated
in Figure 1(b), VLMs generate descriptive text for the videos. This
text forms the foundation for search phrases, which are then stored
in a database to inform query suggestions based on user inputs.

Following the initial phase, our system progresses to the next
stage, where LLMs are instrumental in refining the search phrases.
This is a crucial step in addressing the limitations of VLMs in text
generation. Our empirical observations have shown that while
VLMs excel at scene analysis, they can be less efficient at producing
a varied textual output, particularly when tasked with generating
multiple search phrases. For example, the following phrases were
generated by the VLMs from a single video: 1. Traffic congestion,
2. City street, 3. Vehicle backlog, 4. Highway traffic, 5. Vehicle grid-
lock, 6. Roadway congestion, 7. Vehicle traffic jam, 8. City traffic, 9.
Vehicle traffic, 10. Road congestion, 11. Vehicle traffic delay, 12. City
traffic congestion, 13. Vehicle traffic slowdown, 14. Roadway traffic,
15. Vehicle traffic slowdowns, 16. City traffic congestion, 17. Vehicle
traffic slowdowns, 18. Road congestion, 19. Vehicle traffic slowdowns,
20. City traffic. This pattern of phrase generation by the VLMs is
noteworthy; it does not aim to enumerate phrases for every dis-
cernible object within the video. Instead, it strategically focuses on
a singular, salient feature, from which it systematically derives a
series of related phrases. To overcome this, LLMs are introduced
to produce a broader range of search phrases, thereby ensuring
a more dynamic and effective query suggestion system. This in-
novative approach holds the promise of not just improving, but
revolutionizing video search and analysis, making it more efficient
and user-friendly.

3.3 Segmented Search Phrases
Our system’s segmentation of search phrases is designed with the
user’s convenience in mind. By allowing for more semantic query
fragments, we enhance the user experience. Building upon the
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search phrases generated in Section 3.2, our system formulates Di-
rected Word Graphs (DWG) to facilitate the autocomplete function.
Traditionally, each search phrase would be segmented into individ-
ual words to construct the DWG, leading to a recommendation of
semantically incomplete information at the word level. For example,
if the search phrase “white car on a spacious road” exists and a user
types “white car”, the next suggested word would be “on”, followed
by “a”, which could be perceived as unnecessary steps in the query
completion process.

To refine this, we have developed a system that segments search
phrases not at the word level but into semantically meaningful
sub-phrases before constructing the DWG. This approach parses
the LLMs-generated search phrases into significant parts, as shown
in Figure 1(b), to reduce unnecessary user input. Consequently, our
system offers a more interactive video search query autocomplete
experience by providing users with more contextually relevant
and complete search phrase suggestions. This enables users to
locate their desired content expeditiously with minimal exertion.
Illustrative examples of the prompts utilized for generating search
phrases within our system are depicted in Figure 2.

4 EXPERIMENT
For the evaluation of our system, we focus on the capability of LLMs
to generate phrases for autocomplete purposes automatically. This
section presents metrics that demonstrate how LLMs’ generated
and semantically parsed phrases impact user autocomplete experi-
ences. To illustrate this, we employ a Minimal Keystrokes (MKS)
metric used by Duan and Hsu [13] and Kharitonov et al. [24], which
measures the number of key inputs a user requires to complete a
query. We first introduce the methodology used to measure MKS
in Section 4.1 and discuss the dataset utilized in Section 4.2. We
describe the experimental setup in Section 4.3 and the experimental
results in Section 4.4, followed by an outcomes analysis.

4.1 Evaluation Metric: Minimal Keystrokes
MKS is considered a characterization of the effort involved in en-
tering a query while interacting with completions. It is defined as
the minimum number of keystrokes required to achieve the target
string. To demonstrate this, we construct the DWG from search
phrases generated by LLMs for autocomplete. Let us consider that
each search term, denoted as 𝑞 , belongs to a set of queries 𝑄 , that
a user intends to finish. Given that the user types in one character
sequentially to create a set of partial query 𝑃 = {𝑝𝑖 } |𝑃 |𝑖=1, if a part
of the completed query 𝑞 ∈ 𝑞 is within the top-𝑘 autocompletion
suggestions when the user inputs 𝑝𝑖 , then the query is completed
as 𝑞. The user continues to generate the query. However, if the de-
sired part of the query is not present within the top-𝑘 autocomplete
suggestions, leading the user to proceed with the next partial query.
The value of MKS increases by 1. For instance, assume that a user
interacts with the system to complete the “white van driving on a
larger road” search query. Initially, the user types “wh” and the sys-
tem suggests “white van”. Next, the user enters “d” and the system
recommends “driving”. Finally, upon typing “on a l”, the system
completes the phrase with “on a larger road”. In this sequence, the
total MKS, counting all spaces, is 11.

As shown in Algorithm 1, we calculateMKS for all search phrases
and then determine the average. We compare this metric for search
phrases generated and semantically parsed by LLMs, calculating
the average for each to assess how much our proposed method
reduces user effort compared to the baseline. This demonstrates the
effectiveness of predictive text systems in streamlining user input
and enhancing overall search efficiency.

Algorithm 1 Pseudo code for Minimal Keystrokes
Input: Query set 𝑄
Parameters: Length of autocomplete results 𝑘 , Query 𝑞, Number

of query trials 𝑡 , Partial query set 𝑃
Output: Minimal key strokes set 𝑆
1: for 𝑞 in 𝑄 do
2: 𝑃 ← 𝑀𝑎𝑘𝑒𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑄𝑢𝑒𝑟𝑖𝑒𝑠 (𝑞)
3: 𝑡 ← 0
4: repeat for each: 𝑝𝑖 ∈ 𝑃
5: 𝑡 ← 𝑡 + 1
6: // Get 𝑘 length of autocomplete results
7: 𝑠𝑒𝑎𝑟𝑐ℎ𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑆𝑒𝑎𝑟𝑐ℎ𝐴𝑢𝑡𝑜𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 (𝑝𝑖 , 𝑘)
8: for 𝑟𝑒𝑠𝑢𝑙𝑡 in 𝑠𝑒𝑎𝑟𝑐ℎ𝑅𝑒𝑠𝑢𝑙𝑡𝑠 do
9: // If 𝑟𝑒𝑠𝑢𝑙𝑡 is part of completed phrase 𝑞
10: if 𝑟𝑒𝑠𝑢𝑙𝑡 in 𝑞 then
11: Skip to 𝑝𝑖+|𝑟𝑒𝑠𝑢𝑙𝑡 |− |𝑖𝑛𝑝 |
12: end if
13: end for
14: // If no matched autocomplete, use next partial query
15: until i < |q|
16: 𝐴𝑑𝑑𝐼𝑡𝑒𝑚(𝑆, 𝑡)
17: end for

4.2 Datasets
For our experiments, we utilized the Driving Risk AssessmentMech-
anism with A captioning module (DRAMA) [34] dataset, which is
captured from a moving vehicle on highly interactive urban traffic
scenes in Tokyo. The dataset includes 17,785 scenario clips, each
2 seconds long, providing high-resolution footage synchronized
with vehicle dynamics data. These clips were selectively filtered
to highlight the driver’s reactive behaviors to external stimuli that
necessitate braking. The dataset is enriched with annotations across
diverse dimensions, including video and object-level Q/A, risk as-
sessments, and free-form captions. It features 17,066 risk scenarios
with various vehicles, pedestrians, cyclists, and infrastructural el-
ements. The dataset’s free-form descriptive elements consist of
992 unique words, appearing over 306,000 times, offering a rich
linguistic resource for analysis.

4.3 Experimental Setup
We randomly selected 1,000 videos from the DRAMA [34] dataset
to generate text-based driving scenario, utilizing PLLaVA 13B [48]
in the process. Based on the driving scenario, we created 20 search
phrases for each video using LLMs, specifically employing Mistral-
7B-Instruct-v0.2 [20]. These search phrases serve as a baseline in our
approach, where each phrase is segmented into words to construct
a DWG for performing autocomplete. Furthermore, we requested
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(a) Example of generated risk scenario from PLLaVA 13B [48]

(b) Example of generated search phrases (c) Example of segmented search phrases

Figure 2: Example prompt to make search phrases

semantic parsing of these search phrases, grouping semantically
related parts to form a DWG, thereby developing an autocomplete
system that leverages this structure.

We conducted experiments with the number of query sugges-
tions, denoted as 𝑘 , set at 1, 3, 5, and 10, to determine the MKS
for each scenario. To generate scene descriptions using PLLaVA
13B [48], we input 16 frames per video, with the temperature set
at 1.0. The creation of search phrases and the semantic parsing of
these phrases were conducted using Mistral-7B-Instruct-v0.2 [20].
To implement the autocomplete system, we utilized the Flask [17]
package in Python, operating in an environment powered by AMD
EPYC 7643 processor.

4.4 Experimental Results
We explore the performance of our proposed system in enhancing
the convenience of users’ video searches. We investigate how the
average MKS changes with varying values of 𝑘 , and demonstrate
the effectiveness of our method by presenting a boxplot of MKS
when 𝑘 is set to 10. The experiment was conducted on all phrases
generated by LLMs.

Initially, we calculate the average MKS by varying 𝑘 values at 1,
3, 5, and 10 for both the baseline and our proposed method of seg-
mented phrases, as shown in Table 1. The baseline MKS decreases
as the value of 𝑘 increases, indicating that a higher number of au-
tocomplete suggestions enables users to input less. When using
segmented phrases, the MKS at 𝑘 = 1 is similar to the baseline;
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Table 1: Average Minimal Keystrokes

Method 𝑘=1 𝑘=3 𝑘=5 𝑘=10

Baseline 39.43 17.57 17.85 16.78
Segmented 36.85 9.79 8.21 6.78
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Figure 3: A distribution of Minimal Keystrokes when 𝑘 = 10

however, as 𝑘 increases, not only does the reduction in MKS be-
come more pronounced compared to the baseline, but it is also
notable that at 𝑘 = 3 with segmented phrases, the MKS is even
lower than the baseline at 𝑘 = 10, underscoring the enhanced ef-
ficiency of our method. This suggests that parsing phrases with
LLMs improves the quality of the user experience in video searches.
Overall, our system, when suggesting up to 10 queries based on
user input, requires on average 10 fewer inputs to complete the
desired search query compared to the baseline. The efficiency of
the proposed method’s queries can also be seen in the distribution
of MKS for 𝑘 = 10, as illustrated in the boxplot of Figure 3. These
results show an increase in query suggestion performance, with a
lower average and variance in MKS for query completion compared
to the baseline.

4.5 Limitations
Bias in Phrase Generation Our research has identified a notable
limitation concerning the search phrases produced by LLMs. The
model prioritize the primary objects within a video, which can
lead to significant content being overlooked. This bias in phrase
generation often results in the description of only a fraction of the
objects present—typically 1-2 out of 4-5. It is crucial to overcome
this selective focus during phrase creation to ensure that users
receive untruncated video search suggestions that capture the full
scope of the content. Enhancing the algorithm to recognize and
include secondary elements and background details could provide
a more balanced and inclusive representation of the video’s narra-
tive, thereby enriching the user experience with more detailed and
informative search results.

Limited Computational Resources: The limitations of our sys-
tem are primarily related to its computational resource demands.
Since our system generates search phrases based on the outcomes of
VLMs, it requires a significant amount of computational resources.
Unlike conventional VDBMS that could operate within a computa-
tional environment equipped with GPUs capable of running vision
models, our system necessitates a High-Performance Computer
(HPC) setting. Our environment also operated on servers with high
GPU memory (NVIDIA A100) to run VLMs and LLMs. This require-
ment for substantial computational power diminishes the system’s
expandability, underscoring the urgent need for more lightweight
VLMs to enhance it.

5 CONCLUSION AND FUTUREWORK
We present our initial vision for a system that is designed with the
user in mind, guiding them to interact with videos and text using
VLMs and LLMs. This is embodied as an autocompletion feature
for a video search query system. By enabling users to articulate
better video search queries, we aim to accelerate the adoption of
video analytics across various fields. Our system demonstrates
the capability to analyze unannotated visual data automatically
and connect users with the desired content. Furthermore, by post-
processing search phrases with LLMs, we show that it is possible to
enhance the user experience of autocomplete functionality without
analyzing users’ search logs. In the future, we aim to develop a
more precise video search capability by analyzing semantic video
elements at the patch level, allowing us to articulate very fine-
grained search predicates. In future work, we plan to conduct a
user study to evaluate the effectiveness of video search suggestions
utilizing VLMs in enhancing users’ understanding of video content.
Additionally, we intend to create or modify an existing VDBMS that
leverages features from diverse data types, including visual, textual,
geospatial, and depth information, to analyze mobility and travel
patterns. This approach holds promise for advancing the field of
multimodal interaction and making significant contributions to the
data management domain.
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